US009081517B2

a2 United States Patent (10) Patent No.: US 9,081,517 B2
Koniaris et al. 45) Date of Patent: Jul. 14, 2015
(54) HARDWARE-BASED AUTOMATIC CLOCK 6,624,681 Bl ~ 9/2003 Loyer et al.
GATING 6,647,017 B1 11/2003 Heiman
6,717,484 B2 4/2004 Ben-Ayun et al.
. o 6,754,241 Bl 6/2004 Krishnamurthy et al.
(75) Inventors: Kleanthes Koniaris, Palo Alto, CA 6.844.767 B2* 1/2005 ShelOr v 327/291
(US); Josh P. de Cesare, Campbell, CA 6,971,038 B2 11/2005 Santhanam et al.
(US); Timothy J. Millet, Mountain 7,193,543 Bl 3/2007 McLeod et al.
Yiew, CA (US): Jung Wook Cho. 7289598 BI 102007 Paradisectal
. T 1 ,289, aradise et al.
g;ﬁ‘}g;goci‘?gé)s) Erik Machnicki, 7437,583 B2 10/2008 Lu
’ (Continued)
(73) Assignee: Apple Inc., Cupertino, CA (US)
FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this y
patent is extended or adjusted under 35 EP 2282265 22011
U.S.C. 154(b) by 667 days. OTHER PUBLICATIONS
(21) Appl. No.: 13/223,282 DTA-120 Product Specification, “DVB/ASI Input Adapter for PCI
) Bus,” DEKTEC Digital Video BV, Jul. 2003, 30 pages.
(22) Filed: Aug. 31, 2011 (Continued)
(65) Prior Publication Data
US 2013/0055004 A1 Feb. 28. 2013 Primary Examiner — Paul Yanchus, 111
0 28, (74) Attorney, Agemt, or Firm—Rory D. Rankin;
(51) Int.ClL Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.
GO6F 1/32 (2006.01)
GOG6F 1/10 (2006.01) 7 ABSTRACT
GOG6F 1/24 (2006.01) A system and method for automatically updating with hard-
(52) U.S.CL ware clock tree settings on a system-on-a-chip (SOC). A SOC
CPC .. GO6F 1/10 (2013.01); GO6F 1/24 (2013.01); includes a hardware clock control unit (HCCU) coupled to a
GOGF 1/3237 (2013.01); Y02B 60/1221 software interface and a clock tree. The SOC also includes
(2013.01) multiple integrated circuit (IC) devices, wherein each IC
(58) Field of Classification Search device receives one or more associated core clocks provided
None by one or more phase lock loops (PLLs) via the clock tree.
See application file for complete search history. The HCCU receives a software-initiated request specifying a
given IC device is to be enabled. The HCCU identifies one or
(56) References Cited more core clocks used by the given IC device. For each one of

U.S. PATENT DOCUMENTS

the identified core clocks, the HCCU configures associated
circuitry within the clock tree to generate an identified core
clock. The HCCU may also traverse the clock tree and disable

5,465,059 A 11/1995 Pan et al. : .
clock generating gates found not to drive any other enabled
5,553,021 A 9/1996 Kubono etal. S dovi Y
5,790,609 A 8/1998 Swoboda gates or IC devices.
6,347,119 B2 2/2002 Matsumura et al.
6,426,972 Bl 7/2002 Endres et al. 20 Claims, 8 Drawing Sheets
i . Core Clock Core Clock Core Clock Core Clock
2::;: Device Enable ID Do D1 D2 DM Table
D 514a 516 518 520 510
Device Enable ID Core Clock Core Clock Core Clock
ID14 ID18 . IDP
514b 522 524
Selected Core Clock IDs |
Level 0 Level 1 Level M
Core | Level 0 Gate Level 1 Gate Level M Gate Table
Clock ID | Gate ID | Parameter | Gate ID | Parameter | = = = | Gate ID | Parameter 530
532a | 53a 538a 542
Level 0 Level 1 Level J
Core | Level 0 Gate Level 1 Gate Level J Gate
Clock ID | Gate ID | Parameter | Gate ID | Parameter | = = = | Gate ID | Parameter
532b | 53db 538b 540b 546 548

Control and Timing Logic
550
Control

Clock Network

To

Clock
Switching
Network

US 9,081,517 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

7,475,374 Bl 1/2009 Johnson et al.
7,580,691 Bl 8/2009 Reed et al.
7,634,028 B2 12/2009 Crawley
7,787,569 B2 8/2010 Hayem et al.
7,804,920 B2 9/2010 Deisher et al.

2003/0071657 Al*
2003/0185238 Al
2003/0189953 Al

4/2003 Soerensen et al. 326/93
10/2003 Strasser et al.
10/2003 Matsumura et al.
2004/0145400 Al 7/2004 Mariggis
2008/0307240 Al 12/2008 Dabhan et al.
2008/0313480 Al* 12/2008 Malhietal.c.......... 713/323
2008/0317185 Al 12/2008 Mueller et al.
2009/0138745 Al 5/2009 Dorsey et al.
2010/0228955 Al 9/2010 Niggemeier et al.

OTHER PUBLICATIONS

Harmonic Inc., “Narrowcast Services Gateway,” www.harmonicinc.
com/view__csd__product__group.cfm?classID=1040, 2 pages.
[Retrieved Mar. 24, 2005].

Harmonic Inc., Digital Video Products, “Narrowcast Services Gate-
way NSG 8000 Family,” 2005, 4 pages.

Harmonic Inc., Digital Video Products, “Narrowcast Services Gate-
way NSG Family,” 2003, 4 pages.

“Model D9479 Gigabit QAM Modulator,” Scientific Atlanta, Part
No. 4005270 Rev A, Jan. 2004, 3 pages.

Motorola, “SEM SmartStream Encryptor Modulator,” 2002, 2 pages.
Cisco Systems,“CISCO UMG9850 QAM Module,” www.cisco.
com/en/US/products/hw/video/ps5648/5649/, 2 pages. [Retrieved
Mar. 24, 2005].

Cisco Systems, “Cisco UMG980 Series Digital Video Networking
Products: Cisco uMG9850 QAM Module Data Sheet,” printed from
the internet: http://www.cisco.com/warp/public/cc/pd/mxsv/prodlit/
9850d__ds.pdf, 4 pages. [Retrieved Mar. 24, 2005].

Didier Le Gall, “MPEG: A Video Compression Standard for Multi-
media Applications,” Communications of the ACM, vol. 34, No. 4.
Apr. 1991, pp. 47-58.

* cited by examiner

US 9,081,517 B2

Sheet 1 of 8

Jul. 14, 2015

U.S. Patent

} OId
(1)
Spod 90BpRI| O]
W A
e |
| poeT |
_ 108s800.1d “ ittt
_ . orl 051 I _ 971 — _
I . ayoen Aowspy _A|V I | suun 1eseydusg vcl |
_ _ _ ' >._OE®_>_. J9||ojuoD
_ eoel _ owil | -|eay-UoN Aedsia _
| | 1ossao0idq _ " : _
I
 —— —— _———————— _ > I
7 _ _
—) — — " eet 0zT _
_ Hun [onuoD Jebeuepy fousIeno O] [_ oLl 120y soydeis) 0spIA | |
%00|D BieMpIEH Jomod | _ :
_ 10]B18]820Y _ I
M—_— e 5 ' I
o g
I —
_ GOLT q0L1 e0Ll I 09T
11d : Td | (07d) dooq | |
_ 3007 oseud | | 19][01u0D) Alowa
I
b o e e .

001 diyD e uo weishg _

US 9,081,517 B2

Sheet 2 of 8

Jul. 14, 2015

U.S. Patent

%00[D 92IN0S

QSN\

YO0|D 82IN0g

q0L1

q0ec \

MO0|DH |aInog

T1d

0
(711d) dooT

BQEC \

%007 8seyd

¢ Old
|||||| -
| |
| wo9¢ | 90|10 8107
| [eomeaol [7 ’
_ _ love
_ : L
! : Lo
I I
I B00¢ | o010 2100 L
I ao1na(DI 4 7 0ce
_ _ 20te MOMIBN BUIYOIMS 00[D)
_ -
“ 0S¢ | 90|10 8107
I Ndo I /
_ | qove B
I
_ BOCT 30| 810D
I | tossesoig A.“J
| | EOve
-
> 3o .
a|qeug - HUN [OUOD YO0|D dlempleH
201A8(] olqeus
' \ / ao1na(Q
leve eziz
(i]%4
alemyos
00Z Wa)sAg A

Buiyoumg 221nog 320|D

US 9,081,517 B2

Sheet 3 of 8

Jul. 14, 2015

U.S. Patent

€ 9l4

qove 0D epyz ¥20[D
2100 2109
IIIIII e |

qzot
J8pINg

N

BZO¢
JepIng

N

lovz 401D
—~ 8107
I
_ DZot .- s
_ J9PINI N
I

R

r—-—t———— -

| e -
_ \ PZSE 01eD x:7 - xm|mm L) x:,_\7
|

L

09€ sieping [+
42010 _

1

B A N A

0ce /

spomIBN BulyOIMS 300[0)

39010

1

0GE sejen >

uonoaas ¥20[0 "

OV€ steyng |
%00[0 peleg |

0c<
21607
[o5uo09

M [013U0D
oLe

US 9,081,517 B2

Sheet 4 of 8

Jul. 14, 2015

U.S. Patent

v "Old

ZHI

LLL

0cr
JOpIAIQ N

ZHIN 2¥€ H

P09Z
ao1A0(Q DI

ZHW L'LE

giv
JSpIAIg N

ZHW 2¢ve H
€ = 10988

= = L = 10998
e XF ojen x:§/ SRR \:u ojen x:§/

R

FTY

80v
JspINg N

ZHIN 9201 H

ZHI ¢¥e _

90v
JSPIAIA N

ZHIN @NOPH

€=N

= 0 = 109108 —
YOV o120 x:s_/ . xow - x:_\,_xu poles

i

Tt

00% syied @ad] 120|D |\

ZHIN 9¢01

ZHN ¥

US 9,081,517 B2

Sheet 5 of 8

Jul. 14, 2015

U.S. Patent

G old
NIOMIBN [o)uod
Buiyoums MOMISN MO0ID \ 0cS
o010 @ \ 21607 Bulwi] pue jonuoH
ol 09% *
8¥S ors q0tS Q8¢S qo¢s ayecs qces
lopwered [gl | ... | 1epwelreq | g ees | Jepwered | @l 9eo |l qoon
2)en) MELCE] ajeo) L [one7] ?)en) Qlene | 8u0D e
[19A87 L 18Ae7 0 19A87
s F4Z] BOvS BREG B9CS ByCG BES
a\ lopwered | g | ... | sepwereq | gl eeo | Jepwered | @l aies |l yoon
Sl 2)en) NELER a)eo) WEEN 2)e9) 0lone] | @109
W [eAS7 L 18A7 0 19A87
$dI J90|D 810D pPeJdeS
oS 7 Tic — -
- qcls
ddal SsLal ¥l al ql 8|qeug 891A8Q
- o010 210D 00|10 210D 300]D 2100
olLs — oTc e 5 ail
olqeL 0¢s o glLs 91¢ ¥lLS rARS olqeuT
W ai Z al L al 0dal qdl 81qeus 291eQ
%00[D 8100 %20]D 8100 3}00|D 810D %00]D 8100 : elreg

U.S. Patent Jul. 14, 2015

Sheet 6 of 8

US 9,081,517 B2

e ™
Receive a software-initiated device Identlfyda gl\t/e?hdewce t
enable request at a hardware clock corresponaing 10 Ine reques
network control unit. ———— and IDs of associated core
clocks.
604
\ J ¢
Identify a clock generating gate Select a gi
) 4 C given one of the
associated V‘(’:'Itgctkhe gIven core. 1 | identified core clocks. —
608 606
Identify parameters associated with
> the clock gate and load the
parameters into the clock gate.
610
clock signal in
clock gate ready?
Wait for internal clock line to
stabilize. ——No
614
Yes
y
Enable the clock gate and No

Identify additional clock generating
gate in clock tree.
620

<¢——No

Begin reset sequence for the
device.

624

FIG. 6

provide signal on gate output.
616

gates in tree?
618

Yes

last core clock?
622

Yes

U.S. Patent

Jul. 14, 2015

Detect a reset sequence for a given
device on a SOC.

Sheet 7 of 8

US 9,081,517 B2

102

associated core
clock running?

Yes
Y

708

Notify any associated reset controller
and begin device reset sequence.

Perform device turn-on sequence and/
or report a status.
706

716

Complete reset of the given device.

Detect
reset sequence
is finished?
710

Yes
4

Determine if any associated core clocks

are unused after the reset sequence.
12

Detect
unused core

718

Perform core clock disable sequence
for identified core clocks.

clocks?
714

FIG

e

U.S. Patent Jul. 14, 2015 Sheet 8 of 8

4 ™
Receive a software-initiated device
turn-off request at a hardware clock

network control block.
802

Identify and disable a clock
generating gate associated with the
given core clock.

808

!

Identify a clock generating gate in

810

Disable the clock generating gate at
the this level. <+——No
No 816

ast level of clock
gates in tree?
818

Yes+&

Identify both a given device on
a SOC corresponding to the
request and IDs of associated
core clocks.

804

!

Select a given one of the
identified core clocks.
806

— next higher level in clock tree. |——p»f

Determine whether this clock
generating gate provides other
core clocks.

812

Are
other core clocks
provided?
814

Yes

eache

US 9,081,517 B2

last core clock?
820

FIG. 8

Complete device turn-off.
822

US 9,081,517 B2

1
HARDWARE-BASED AUTOMATIC CLOCK
GATING

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to computing systems, and more
particularly, to automatic updating clock tree settings on a
system-on-a-chip (SOC).

2. Description of the Relevant Art

A system-on-a-chip (SOC) integrates multiple functions
into a single integrated chip substrate. The functions may
include digital, analog, mixed-signal and radio-frequency
(RF) functions. Typical applications are used in the area of
embedded systems. Energy-constrained cellular phones, por-
table communication devices and entertainment audio/video
(A/V) devices are some examples of systems using an SOC.
An SOC may use powerful processors that execute operating
system (OS) software. In addition, the SOC may be connected
to both external memory chips, such as Flash or RAM, and
various external peripherals.

The power consumption of integrated circuits (ICs), such
as modern complementary metal oxide semiconductor
(CMOS) chips, is proportional to at least the expression fV2.
The symbol f is the operational frequency of the chip. The
symbol V is the operational voltage of the chip. In modern
microprocessors, both parameters f and V may be varied
during operation of the IC. For example, during operation,
modern processors allow users to select one or more interme-
diate power-performance states between a maximum perfor-
mance state and a minimum power state.

During the execution of applications on embedded sys-
tems, a powerful processor may not be the leading energy-
consumer when high-performance memories, color displays,
and other functions are being used. An overriding power
management goal in portable systems is to reduce system-
wide energy consumption. A dynamic power management
system on an SOC may support multiple power management
policies that allow device manufacturers to specialize policies
for their applications and differentiate their products based on
their own unique approaches to power management. In addi-
tion, as integration increases on a SOC, so does a number of
different active clocks and a number of phase lock loops
(PLLs) to support the clocks.

Embedded systems may not have a basic-input-output-
software (BIOS) or machine abstraction layer to insulate the
OS from low-level device and power management. There-
fore, the kernel in the OS may handle these tasks. As integra-
tion on an SOC increases, the interrelationships between
clock sources and power management modes become more
complex. Further, other tasks become increasingly difficult,
such as managing settings within a clock tree on the SOC. The
resulting delay for deciding on parameter values to use within
the tree and enabling and disabling particular clock generat-
ing gates within the tree causes power to increase and perfor-
mance to reduce. In addition, the software may leave portions
of the clock tree on for a longer amount of time due to the
resulting delay causing decisions to be made late.

In view ofthe above, efficient methods and mechanisms for
managing clock tree settings on a SOC are desired.

SUMMARY OF EMBODIMENTS OF THE
INVENTION

Systems and methods for automatically updating with
hardware clock tree settings on a system-on-a-chip (SOC). In
one embodiment, a SOC includes a hardware clock control

10

20

25

30

35

40

45

50

60

2

unit (HCCU) coupled to a software interface and a clock
switching network (CSN), or a clock tree. The SOC also
includes multiple integrated circuit (IC) devices, wherein
each IC device receives one or more associated core clocks
provided by one or more phase lock loops (PLLs) via the
clock tree. The HCCU may receive a software-initiated
request specifying a given IC device on the SOC is to be
enabled. The HCCU may identify one or more core clocks
used by circuitry within the given IC device. For each one of
the identified core clocks, the HCCU may update and set
parameters for associated circuitry within the clock tree to
generate an identified core clock. The HCCU may also deter-
mine a given clock generating gate in a given level of the clock
tree has no enabled targets or “children”. A target may be
another clock generating gate or an IC device within the clock
tree. In response to determining there are no targets, the
HCCU may disable the given clock generating gate. The
HCCU may traverse the clock tree from a bottom level to a top
level and disable qualifying clock generating gates.

These and other embodiments will be further appreciated
upon reference to the following description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a generalized block diagram of one embodiment
of a system-on-a-chip (SOC).

FIG. 2 is a generalized block diagram illustrating one
embodiment of a clock source switching system.

FIG. 3 is a generalized block diagram illustrating one
embodiment of a clock switching network.

FIG. 4 is a generalized block diagram illustrating one
embodiment of clock tree paths.

FIG. 5 is a generalized block diagram illustrating one
embodiment of search logic for determining clock control
signals when a device enable identifier is provided.

FIG. 6 is a generalized flow diagram illustrating one
embodiment of a method for enabling an IC device on a SOC.

FIG. 7 is a generalized flow diagram illustrating one
embodiment of a method for performing a reset sequence for
a recently enabled IC device.

FIG. 8 is a generalized flow diagram illustrating one
embodiment of a method for disabling core clocks on a SOC.

While the invention is susceptible to various modifications
and alternative forms, specific embodiments are shown by
way of example in the drawings and are herein described in
detail. It should be understood, however, that drawings and
detailed description thereto are not intended to limit the
invention to the particular form disclosed, but on the contrary,
the invention is to cover all modifications, equivalents and
alternatives falling within the spirit and scope of the present
invention as defined by the appended claims.

While the invention is susceptible to various modifications
and alternative forms, specific embodiments thereof are
shown by way of example in the drawings and will herein be
described in detail. It should be understood, however, that the
drawings and detailed description thereto are not intended to
limit the invention to the particular form disclosed, but on the
contrary, the intention is to cover all modifications, equiva-
lents and alternatives falling within the spirit and scope of the
present invention as defined by the appended claims. As used
throughout this application, the word “may” is used in a
permissive sense (i.e., meaning having the potential to),
rather than the mandatory sense (i.e., meaning must). Simi-
larly, the words “include,” “including,” and “includes” mean
including, but not limited to.

Various units, circuits, or other components may be
described as “configured to” perform a task or tasks. In such

US 9,081,517 B2

3

contexts, “configured to” is a broad recitation of structure
generally meaning “having circuitry that” performs the task
ortasks during operation. As such, the unit/circuit/component
can be configured to perform the task even when the unit/
circuit/component is not currently on. In general, the circuitry
that forms the structure corresponding to “configured to” may
include hardware circuits. Similarly, various units/circuits/
components may be described as performing a task or tasks,
for convenience in the description. Such descriptions should
be interpreted as including the phrase “configured to.” Recit-
ing a unit/circuit/component that is configured to perform one
or more tasks is expressly intended not to invoke 35 U.S.C.
§112, paragraph six interpretation for that unit/circuit/com-
ponent.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth to provide a thorough understanding of the present
invention. However, one having ordinary skill in the art
should recognize that the invention might be practiced with-
out these specific details. In some instances, well-known
circuits, structures, and techniques have not been shown in
detail to avoid obscuring the present invention.

Referring to FIG. 1, a generalized block diagram illustrat-
ing one embodiment of a system-on-a-chip (SOC) 100 is
shown. The SOC 100 is an integrated circuit (IC) that includes
multiple types of IC designs on a single semiconductor die,
wherein each IC design provides a separate functionality.
Traditionally, each one of the types of IC designs may have
been manufactured on a separate silicon watfer. In the illus-
trated embodiment, the SOC 100 includes one or more clock
sources, such as phase lock loops (PLLs) 110a-110g, a
memory controller 160, various input/output (I/O) interfaces
170, a memory 150, which may be a non-volatile memory,
and one or more processors 130a-1304 with a supporting
cache hierarchy that includes at least cache 140.

In addition, the SOC 100 may include other various analog,
digital, mixed-signal and radio-frequency (RF) blocks. For
example, the SOC 100 may include a video graphics control-
ler 120, adisplay controller 124, real-time peripheral memory
units 122 and non-real-time memory peripheral units 126. In
order to process applications in an energy-efficient manner on
the SOC 100, a central power manager 160 may be included.

The hardware clock control unit (HCCU) 166 may be
included within the power manager 160 or alternatively be a
separate control block. The HCCU 166 may update associ-
ated circuitry with parameter values within a clock switching
network (CSN). The CSN may also be referred to as a clock
tree. Communication buses, a clock tree and other signal
routing across the SOC 100 is not shown for ease of illustra-
tion. The HCCU may enable and disable given clock gener-
ating gates within the clock tree. The accelerator 1/O coher-
ency bridge 162 may provide efficient memory accesses for at
least the processors 130a-130d and peripheral devices.

The PLLs 110a-110g may supply source clock signals,
which are routed through a clock tree (not shown) to be
distributed across the die of the SOC 100 and to provide core
clocks to the various processing blocks on the SOC 100. The
SOC 100 may use one or more types of PLLs to generate the
source clocks signals. For example, an integer PLL may be
used. Alternatively, a fractional PLL may be used to generate
multiple clock signals with different clock frequencies from a
single clock crystal.

For an integer PLL, one or more frequency dividers may be
used to provide the output frequency of the output signal as a
rational multiple of the input frequency of the input signal

10

15

20

25

30

35

40

45

50

55

60

65

4

202. In one embodiment, the frequency of an input signal is
multiplied by a ratio of an integer value (integer B) of a
feedback divider within the PLL to an integer value (integer
A) within a pre-divider to generate an output frequency of the
output signal. In other words, frequency,,,,..~
frequency,,,,, x(B/A).

In another embodiment, a post-divider may be used to
generate an output clock signal for a PLL. Similar to the
feedback divider, this post-divider may receive the output
signal of the PLL but have a different integer divisor value
than the feedback divider. When a post-divider is used, the
output frequency is a function of an integer divisor value
(integer C) for the post-divider and the integers A and B.
When an integer PLL is unable to generate a given clock
frequency value within a given threshold, two integer PLLs
may be cascaded together.

An alternative to cascaded integer PLLs, the fractional PLL.
multiplies a frequency of an input signal by an integer and a
fraction. The fraction value is generated by continuously
changing the feedback divider within the PLL. For example,
ifa feedback divider alternates between dividing by an integer
value of 9 and an integer value of 10, then the output fre-
quency would be 9.5 times the frequency of the input signal.
By changing a number of times a division is performed
between the integer values of 9 and 10, different fraction
values between 9 and 10 may be generated. However, side-
bands or spurs at the frequency the divider is being switched
may be generated. These spurs may cause interference with
other circuitry on-chip and noise reduction techniques may be
used to handle them.

The number of clock signals provided on the SOC 100 is a
design choice and may depend on a number of clocks signals
used by the processing blocks on the SOC 100. The process-
ing blocks may also be referred to as integrated circuit (IC)
devices, wherein each IC device receives one or more core
clocks provided as outputs from the clock tree. As integration
on the SOC 100 increases, so does the number of clock
signals to source and to route. System-wide energy consump-
tion increases as more of the PLLs 1104-110g are turned on
and resulting clock signals are generated by multiple clock
generating gates within the clock tree. In order to reduce
system-wide energy consumption, one or more of the IC
devices may be turned off when not in use. The HCCU 166
may detect when a given IC device may be ready to be enabled
or disabled and send an associated indication to software. One
ormore algorithms running in a kernel of an operating system
(OS) may generate enable and disable requests for given IC
devices on the SOC. The HCCU 166 may receive these
requests and handle the steps of enabling or disabling a speci-
fied IC device.

In addition, one or more clock generating gates within the
clock tree may be turned off when not driving another used
clock gate or IC device. Managing the turning on of appro-
priate core clocks for an enabled IC device, the resetting of an
enabled IC device, the turning off of associated core clocks
for a disabled IC device and the turning off of currently
unused clock generating gates within a clock tree core may be
burdensome for software. Therefore, the HCCU 166 may
perform these tasks.

The central power manager 160 may be included in a
general system controller (not shown). A general system con-
troller may manage power-up sequencing of the various pro-
cessing blocks on the SOC 100 and control multiple off-chip
devices via reset, enable and other signals conveyed through
the 1/O interface ports 170. A general system controller may
also manage communication between the various processing
blocks on the multiple buses on the SOC 100. The power

US 9,081,517 B2

5

manager 160 may include power management policies for
multiple IC devices on the SOC 100. One or more of the IC
devices, such as the processors 130a-1304, GPUs, DSPs,
other SIMD cores, and so forth may include internal power
management techniques. However, to manage system-wide
energy consumption, the power manager 160 may alter one or
more operating voltages and operating frequencies to the IC
devices on the SOC 100.

Continuing with the clock tree management, software may
issue a request to enable a given IC device on the SOC. The
HCCU 166 may identify one or more core clocks output by
the clock tree and used by circuitry within the given IC device.
For each one ofthe identified core clocks, the HCCU 166 may
identify one or more associated clock generating gates within
the clock tree used to provide a respective one of the core
clocks. For each one of the identified clock generating gates,
the HCCU 166 may load parameter values corresponding to a
respective one of the core clocks. One example of a parameter
value may include a select value to select one of multiple
inputs on a glitchless clock switching circuit gate, such as a
multiplexer. A second example of a parameter value may be a
divisor value for a clock frequency divider circuit gate. These
parameter values may be load and stored in configuration
registers. After a parameter value is loaded and an internal
clock line is detected to be stable, the HCCU 166 may enable
a given clock generating gate to provide a clock signal on its
output.

The HCCU 166 may also receive a request from software to
disable a given IC device on the SOC. In addition, the HCCU
166 may detect a clock generating gate in a bottom level of the
clock tree does not provide a clock signal to an enabled IC
device. In response to this detection, the HCCU 166 may
disable this clock generating device and traverse the clock
tree toward the top level. During this traversal, the HCCU 166
may determine whether other enabled clock generating gates
provide a clock signal to disabled gates and IC devices. When
found, these clock generating gates may be disabled and a
next upward level of the clock tree may be inspected. Further
details of the features of the HCCU 166 is provided later in the
description. Before continuing with more details of the hard-
ware clock control on the SOC, a further description of the
SOC 100 is provided below.

Each one of the processors 130a-1304 may include one or
more cores and one or more levels of a cache memory sub-
system. Each core may support the out-of-order execution of
one or more threads of a software process and include a
multi-stage pipeline. Each one of the processors 130a-1304
may include circuitry for executing instructions according to
a predefined general-purpose instruction set. For example,
the PowerPC® instruction set architecture (ISA) may be
selected. Alternatively, the x86, x86-64®, Alpha®, MIPS®,
PA-RISC®, SPARC® or any other instruction set architec-
ture may be selected.

Generally, each of the one or more cores within each of the
processors 130a-130d accesses an on-die level-one (L1)
cache within a cache memory subsystem for data and instruc-
tions. The processors 130a-1304 may include multiple on-die
levels (1.2, L3 and so forth) of caches. If a requested block is
not found in the on-die caches or in the off-die cache 140, then
a read request for the missing block may be generated and
transmitted to the memory 150. The memory 150 may be a
non-volatile memory block formed from an array of flash
memory cells and a memory controller (not shown) for the
array. Alternatively, the memory 150 may include other non-
volatile memory technology. The memory 150 may be
divided into separate addressable arrays to be used by the
processors 130a-1304 and other processing blocks on the

10

15

20

25

30

35

40

45

50

55

60

65

6

SOC 100. Each addressable array may have its own memory
controller. The number of data inputs and outputs and address
inputs will depend on the size of the array used.

The processors 130a-130d may share the memory 150 with
other processing blocks, such as graphics processing units
(GPUs), application specific integrated circuits (ASICs), and
other types of processor cores. Therefore, typical SOC
designs utilize acceleration engines, or accelerators, to effi-
ciently coordinate memory accesses and support coherency
designs between processing blocks and peripherals. Ina SOC
designs that includes multiple processors and processing
blocks, these components communicate with each other to
control access to shared resources. Memory coherence may
be managed in software, in the accelerator /O coherence
bridge 162, or both. The bridge 162 may also connect low-
bandwidth, direct memory access (DMA)-capable IO devices
to the memory 150 via an accelerator coherency port (ACP)
on one or more of the processors 130a-130d. For off-chip
memory requests, the memory controller 160 may be utilized.

The SOC 100 may include multiple processing units,
ASICs and other processing blocks. Other processor cores on
SOC 100 may not include a mirrored silicon image of pro-
cessors 130a-1304d. These other processing blocks may have
a micro-architecture different from the micro-architecture
used by the processors 130a-130d. For example, a micro-
architecture that provides high instruction throughput for a
computational intensive task. Processor core 172 may have a
parallel architecture. For example, other processors may
include a single instruction multiple data (SIMD) core.
Examples of SIMD cores include graphics processing units
(GPUs), digital signal processing (DSP) cores, or other. For
example, the video graphics controller 120 may include one
or more GPUs for rendering graphics for games, user inter-
face (UI) effects, and other applications.

The display controller 124 may include analog and digital
blocks and digital-to-analog converters (DACs) for bridging
internal blocks to external display physical blocks. The units
122 may group processing blocks associated with real-time
memory performance for display and camera subsystems.
The units 122 may in clued image blender capability and
other camera image processing capabilities as is well known
in the art. The units 122 may include display pipelines
coupled to the display controller 124.

The units 126 may group processing blocks associated
with non-real-time memory performance for image scaling,
rotating, and color space conversion, accelerated video
decoding for encoded movies, audio processing and so forth.
The units 122 and 126 may include analog and digital encod-
ers, decoders, and other signal processing blocks. The 1/O
interface ports 170 may include interfaces well known in the
art for one or more of a general-purpose I/O (GPIO), a uni-
versal serial bus (USB), a universal asynchronous receiver/
transmitter (WART), a FireWire interface, an FEthernet inter-
face, an analog-to-digital converter (ADC), a DAC, and so
forth.

Turning now to FIG. 2, a generalized block diagram illus-
trating one embodiment of a clock source switching system
200 is shown. The switching system 200 may include soft-
ware 210, which communicates with the HCCU 166 on the
SOC 100. The software 210 may be one or more computer
programs stored both in a kernel of an operating system (OS)
and in a memory accessed by one or more of the processors
1304a-130d.

Each of the PL.Ls 1104-110g may provide a respective one
of the source clocks 230a-230g. The IC devices on the SOC
100 may be represented by processor 130a, a graphics pro-
cessing unit (GPU) 250, and IC devices 260a-260m. Each of

US 9,081,517 B2

7

the processors 1305-1304 is not shown for ease of illustration.
Although a single GPU is shown, one or more of the IC
devices 260a-260m may include a GPU. Each of the IC
devices 260a-260m represent possible functional devices
located on the SOC 100 and receiving a respective one of the
core clocks 2404-240;. In addition, one or more memories
and buses may have a separate generated core clock. Alter-
natively, a given bus or memory may utilize one of the core
clocks 240a-240;.

In one embodiment, each of the core clocks 240a-240; is a
different core clock routed on the SOC 100 as an output of the
clock switching network 220. In another embodiment, one or
more of the core clocks 240a-240; is a same core clock as
another routed on the SOC 100 as an output of the clock
switching network 220. In other words, two or more of the
processor 130a, the GPU 250 and the IC devices 260a-260m
may receive a same clock signal.

The clock switching network 220 may connect each one of
the core clocks 240a-240;5 to a respective one of the source
clocks 230a-230g. The clock switching network (CSN) 220
may also be referred to as the clock tree 220. The clock
switching network 220 may include one or more clock buff-
ers, gated clock buffers that receive a clock enable signal,
glitchless clock switching circuits such as glitchless multi-
plexers (MUXes), clock frequency dividers and so forth.

The software 210 may convey device enable signals 242a-
242; to the HCCU 166 when given IC devices are determined
by the software 210 to be enabled or disabled. The HCCU 166
may utilize the device enable signals 242a-242j and other
information sent in an enable/disable request to control set-
tings within the CSN 220. The device enable signals 242a-
242 may also be sent to the IC devices. However, the speci-
fied IC device may not actually be enabled and receive a
respective running clock of the core clocks 2404-240; until
the HCCU 166 has finished adjusting settings within the CSN
220.

In one embodiment, a hardware abstraction layer or library
(HAL) is used to couple the software 210 to the HCCU 166.
The HAL may be software written in the C programming
language or any other suitable programming language. The
HAL may be used to manage clock configuration registers
within the clock tree. The clock configuration registers may
be used to control the clock generating gates in the clock tree.
The clock generating gates may include glitchless clock
switching gates, such as multiplexers; clock frequency
divider gates, PLLs, enabled clock buffers and so forth. One
or more clock configuration registers may be used to enable a
given clock generating gate and store parameters used to
control the operation of the clock generating gate. The param-
eter values may include clock frequency divisor values, selec-
tion values corresponding to one of multiple clock input lines
to provide on a clock output line, and so forth.

Each clock configuration register may have an associated
software data structure that contains a count of how many
enabled “children” are using an associated “parent” clock
generating gate. A “child” for the “parent” clock generating
gate may be another clock generating gate in a lower level of
the clock tree or an IC device coupled to receive a clock signal
from the “parent” clock generating gate. The associated soft-
ware data structure may also contain a cached bit to indicate
whether the associated output clock is currently running.

In one embodiment, a single register within the HCCU 166
may store global enable and disable automatic clock gating
feature information. For example, one bit within this global
register may indicate whether IC devices on the SOC are
allowed to request a given one of the core clocks 240a-240j to
be enabled or disabled and appropriately changed by an asso-

10

15

20

25

30

35

40

45

50

55

60

65

8

ciated “parent” clock generating gate within the CSN 220. A
second bit within the global register may indicate whether
clock generating gates within the CSN 220 are allowed to
change clock output signals to “children”. A third bit within
the global register may distinguish PLLs from other clock
generating gates within the CSN 220 and indicate whether
PLLs are allowed to change clock output signals to “chil-
dren”. These global bits may be received by control logic
within the HCCU 166, which also may receive the values
stored in the clock configuration registers, and used to deter-
mine operation updates, if any, of clock generating gates
within the CSN 220.

Returning again to the count of enabled “children” for an
associated “parent” clock generating gate, in one embodi-
ment, when the count increases from zero to a non-zero value,
anassociated enable control bit may be set. However, actually
turning on of the associated clock generating gate may still be
dependent on control logic outputs as described above and
circuit timing. The circuit timing may include waiting for an
internal clock line to stabilize before enabling it to be pro-
vided on an output clock line of the associated clock gener-
ating gate. For example, a glitchless clock MUX may not
select an input clock line to be provided on an output clock
line until the input clock line receives a correct and stable
clock signal from above levels within the CSN 220.

When the count is decremented from a non-zero value to
zero, an enable control bit may be deasserted and the HCCU
166 may disable the associated clock generating gate. The
process of turning off clock generating gates may be auto-
matic and not wait for requests from the software 210. There-
fore, unused portions of the CSN 220 may be automatically
turned off by hardware, which reduces energy consumption
and removes burden from the software 210. The HCCU 166
may also remove burden from the software 210 as described
above regarding controlling the enable/disable capabilities of
clock generating gates within the CSN 220.

In one embodiment, the software 210 may send a valid
request signal to indicate an incoming request and associated
enable/disable IC device request information. The request
information may include one of the IC device enable IDs
242a-242j. Inresponse to receiving this information from the
software 210, the HCCU 166 may identify one or more of the
core clocks 240a-240; provided by the CSN 220 and used by
circuitry within the specified one of the processor 130a, the
GPU 250 or the IC devices 260a-260m. For each one of the
identified core clocks, the HCCU 166 may identify one or
more associated clock generating gates within the CSN 220
used to provide a respective one of the core clocks 240a-240;.

For each one of the identified clock generating gates, the
HCCU 166 may determine a timing of enabling or disabling
(depending on the request) associated clock generating gates.
For example, a given clock generating gate may not be
enabled until gates in upper levels of the CSN 220 are enabled
and provide stable clock signals with a correct given fre-
quency. A given clock generating device may not be disabled
until all “children” in a lower level of the CSN 220 are
disabled. When enabling a clock generating gate, the HCCU
166 may load parameter values stored in configuration regis-
ters in to the gate. Again, one example of a parameter value
may include a select value to select one of multiple inputs on
aglitchless clock switching circuit gate, such as a multiplexer.
A second example of a parameter value may be a divisor value
for a clock frequency divider circuit gate. After a parameter
value is loaded and an internal clock line is detected to be
stable, the HCCU 166 may enable a given clock generating
gate to provide a clock signal on its output.

US 9,081,517 B2

9

Turning now to FIG. 3, a generalized block diagram illus-
trating one embodiment of a clock switching network 220 on
a SOC is shown. The clock switching network (CSN) 220
may also be referred to as a clock tree 220. In the illustrated
embodiment, the clock switching network (CSN) 220
includes at least gated clock buffers 340, clock selection gates
350 and clock dividers 360. Although the buffers and gates
and dividers in the network 220 are shown in this particular
order, other combinations are possible and contemplated.
Further, other or additional circuitry and logic gates may be
utilized as well. The arrangement and placement of the cir-
cuitry 340-360 may be set across the die of the SOC 100 in a
manner that designers determine provides good design trade-
offs.

In addition, the CSN 220 may include control logic 320,
which is coupled to at least each one of the circuitry gates
340-360 and the HCCU 166. The control logic 320 may
include clock configuration registers used to store parameter
values associated with the circuitry gates 340-360. The con-
trol logic 320 may provide control signals to the circuitry
gates 340-360 for enabling, disabling and changing operation
states of given gates.

The multiple configuration registers, power state registers
and other registers included in the control logic 320 may be
updated by software or hardware. Either the software 310 or
the HCCU 166 may provide the control 310. The control
signals 310 may be used to update the contents of registers
included in the control logic 320 based on included combi-
natorial logic.

The gated clock buffers 340 may include the gated clock
buffers 342a-342f. The gated clock buffers 3424-342f may
receive the source clocks 230a-230g provided by the PLLs
110a-110g. Each of the gated clock buffers 342a-342f may
receive a clock enable signal. In one embodiment, when the
received clock enable signal is asserted, each associated one
of the gated clock buffers 342a-342f provides a received
clock signal on its output. Otherwise, a binary logic low value
may be provided on the associated output. The gated clock
buffers 342a-342f may be enabled and disabled as IC devices
are turned on and off across the die of the SOC 100 and
according to power domain management schemes. The clock
enable signals may be asserted and deasserted by at least the
control logic 320.

The clock selection gates 350 may include the MUX gates
352a-3524. These gates may receive one or more clock select
input signals from the control logic 320. These select input
signals may be used to determine which one of two or more
clock input signals is to provide an associated clock signal on
an output line. The clock select input signals and the multiple
clock input signals may be asynchronous with respect to each
other. However, the clock select input signals may not be
provided to an associated one of the MUX gates 352a-352f
until the multiple clock input signals have settled.

In one embodiment, each one of the MUX gates 352a-352f
is a glitchless clock MUX gate. As is well known in the art, a
glitchless clock MUX gate is typically used for clock selec-
tion on a given line while preventing an occurrence of glitch-
ing on the given line. Circuit techniques may be used to
prevent any glitches on an output line although the received
clock lines may be asynchronous and switching delays from
one clock source to another clock source may be short.

The clock dividers 360 may include N dividers 362a-362g.
The clock N dividers 362a-362g are frequency dividers that
generate an output signal with an output frequency that is a
divided version of an input frequency of a received input
signal. The divided value is represented as the integer N.

10

15

20

25

30

35

40

45

50

55

60

65

10

In addition, one or more of the N dividers may be a frac-
tional-N frequency synthesizer that is constructed using two
integer N dividers. For example, a first divider may be a
divide-by-N frequency divider and a second divider may be a
divide-by-(N+1) frequency divider. With a modulus control-
ler, an output division value may be toggled between the two
integer values N and N+1 in order that an associated oscillator
alternates between the two locked frequencies. The oscillator
may stabilize at an output frequency that is a time average of
the two locked frequencies.

Further, the N dividers 360 may include one or more clock
doublers. A clock doubler may create an output signal with
two pulses for each received input pulse. A clock doubler may
include pulse-width varying circuitry and voltage level com-
parators. Similar to the clock enables provided to the gated
clock buffers 340 and the clock select input signals provided
to the clock selection gates 350, divisor values may be pro-
vided to the clock dividers 360 by the control logic 320.

Although the PLLs 110a-110g are not shown inside of the
CSN 220, the HCCU 166 may enable, disable and load
parameter values into the PLLs 110a-110g in a similar man-
ner as for circuitry gates 340-360. Each one of the PLLs
110a-110g may include control logic similar to control logic
320 used to update divisor values and for enabling and dis-
abling circuitry. Additionally, the HCCU 166 may include
control logic and configuration registers used to provide con-
trol signals to control logic within each one of the PLLs
110a-110g.

As described earlier, although the buffers and gates and
dividers in the network 220 are shown in this particular order,
other combinations are possible and contemplated. The CSN
220 may be organized in levels. For example a bottom level
may include multiple N dividers providing the core clocks
2404a-240;. The “children” of these N dividers may be the IC
devices. A nextupper level may include clock buffers or clock
MUX gates, which act as “parents” for the N dividers by
providing an input clock signal to the N dividers. Similarly, a
next upper level may include clock buffers and N dividers that
provide clock signals and act as “parents”. The top level may
include the PLLs 110a-110g providing the source clocks
2304-230g.

Referring now to FIG. 4, a generalized block diagram
illustrating one embodiment of clock tree paths 400 is shown.
In the illustrated embodiment, a clock source, such as an
off-die crystal oscillator provides a reference clock signal to
PLL 1105 of the multiple PL.Ls 110a-110g. In the example
shown, this reference clock signal has a reference frequency
otf'24 MHz although any frequency value may be chosen to fit
a particular design. The PLL 1105 may have divisor values
loaded that are used to generate an output clock signal with an
output frequency of 1026 MHz. This output clock signal may
be received by multiple clock generating gates. For example,
at least each of the clock MUX gates 402 and 404 and the
enabled clock gate buffer 410 may receive this output clock
signal. In this example, the PLL 1105 is the “parent” and each
of the gates 402, 404 and 410 are the “children”.

The MUX gate 402 may be coupled to a configuration
register that holds the select input value 2. The input clock
lines for the MUX gates 402, 404, 412 and 414 shown in the
illustrated example may be numbered 0 to 3 from left to right.
Therefore, the output clock signal from the PLL 1105 is
selected by MUX gate 402 to be provided on the output line.
The N divider 406 receives this output clock signal from the
MUX gate 402 and provides an associated output clock signal
with an output frequency of 342 MHz. The N divider 406 may
be coupled to a configuration register that holds the integer
divisor value of 3.

US 9,081,517 B2

11

The select input value of 2 for the MUX gate 402 may not
be sent to the MUX gate 402 until the clock signal from the
PLL 1105 is stable and the N divider 406 has received its
integer divisor value and is ready for a new input clock signal.
The N divider 406 provides a clock signal to at least the MUX
gate 412, the MUX gate 414 and the enabled clock buffer 416.
For these gates, the N divider 406 is a “parent” and each of the
clock receiving gates 412, 414 and 416 are “children”. The
loading and use of select input values and integer divisor
values may be performed similarly for MUX gates 404, 412,
and 414 and for N dividers 408, 418 and 420. The N divider
418 may provide one of the core clocks 2404-240; to IC
device 260d. The N divider 418 is the “parent” for IC device
260d. The IC device 2604 is the “child” for the N divider 418.
These parent-child relationships and near-neighbor commu-
nication described above may be used by the HCCU 166 to
correctly provide clocks signals through the CSN 220 and
provide associated core clocks to IC devices being enabled.
Similarly, the HCCU 166 may use the parent-child relation-
ships and near-neighbor communication to progressively dis-
able gates and core clocks when IC devices are disabled.

Referring now to FIG. 5, a generalized block diagram
illustrating one embodiment of search logic for determining
clock control signals when a device enable identifier is pro-
vided. The software 210 may issue an IC device enable opera-
tion to be performed. This operation may identify one of the
general-purpose processors, GPUs or other IC devices on the
SOC to be enabled. The software 210 may provide an IC
device enable identifier. This value may be used to index a
table 510.

Each entry of the table 510 may include an IC device
enable identifier (ID). The first entry has a first field 512qa
storing an IC device enable ID value. A second entry has a first
field 51254 storing an IC device enable ID value and so forth.
Each entry may store identifiers (IDs) of one or more core
clocks of the core clocks 240a-240; that correspond to an IC
device enable 1D stored within the same entry. For example,
the first entry in table 510 has at least fields 5144, 516,518 and
520 to store associated core clock IDs. The second entry has
atleast fields 5145, 522 and 524 to store associated core clock
IDs. Each entry in table 510 may have a different number of
fields, since each IC device may have a different number of
associated core clocks than other IC devices. The selected
core clocks IDs from table 510 may be used to index table
530.

Each entry of the table 530 may include a core clock ID.
The first entry has a first field 532q storing a core clock ID
value. A second entry has afirst field 5324 storing a core clock
1D value and so forth. Each entry may store identifiers (IDs)
of one or more clock generating gates within the CSN 220
associated with a core clock ID stored in the same entry. In
one embodiment, each entry may store associated parameters
for the clock generating gates. Alternatively, these parameter
values may be stored in separate configuration registers and
corresponding register identifiers may be stored in the entries
of table 530.

The first entry of table 530 may have at least fields 534a,
536a, 5384, 5404, 542 and 544 to store 1Ds of clock gener-
ating gates at different levels of the CSN 220 and current
associated parameters. The IDs of the clock generating gates
may identify the gates within the CSN 220 used to provide a
core clock to a given IC device from a PLL at the top level of
the CSN 220 to a level coupled to the given IC device. Refer-
ring again to FIG. 4, the clock generating gates used to pro-
vide a core clock to the IC device 260d include the PLL 1105,
the MUX gate 402, the N divider 406, the MUX gate 412, and
the N divider 418. The second entry of table 530 may include

10

15

20

25

30

35

40

45

50

55

60

65

12

fields 5345, 536b, 538b, 5405, 546 and 548 to store 1Ds of
clock generating gates at different levels of the CSN 220 and
current associated parameters. Each entry in table 530 may
have a different number of fields, since each core clock may
have a different number of associated clock generating gates
than other core clocks. The selected IDs from table 530 may
be used in control and timing logic 550 to provide clock
network control 560 values sent to the CSN 220. For example,
the known parameters may be loaded according to a timing
schedule. One such timing schedule may include waiting to
provide select input values to a clock MUX gate until clock
input lines are stable and an N divider coupled to an output
line has received its integer divisor value and is setup for the
specified frequency division.

Turning now to FIG. 6, a generalized flow diagram illus-
trating one embodiment of a method 600 for enabling an IC
device on a SOC is shown. For purposes of discussion, the
steps in this embodiment are shown in sequential order. How-
ever, some steps may occur in a different order than shown,
some steps may be performed concurrently, some steps may
be combined with other steps, and some steps may be absent
in another embodiment.

Inblock 602, the HCCU 166 may receive an enable request
from the software 210 specifying a given IC device on the
SOC 100. In block 604, the HCCU 166 may use an IC device
identifier to identify one or more core clocks of the core
clocks 240a-240; associated with the specified IC device. In
block 606, the HCCU 166 may select a given one of the
identified core clocks. In block 608, the HCCU 166 may
identify a clock generating gate at the top of a clock tree
associated with the given core clock. For example, one of the
PLLs 110a-110g may be identified and selected.

In block 610, the HCCU 166 may identify parameters
associated with the clock generating gate and load the param-
eters into the clock gate. For a PLL, the parameters may
include a pre-divider integer divisor value, a feedback integer
divisor value, and a post-divider integer divisor value. For
other clock generating gates, other parameters may be appro-
priate as described earlier. The parameters may be provided
according to a timing schedule based on circuit characteris-
tics. If an internal clock line is not yet stable with a correct
frequency (conditional block 612), then in block 614, the
HCCU 166 may wait before updating a next level of the CSN
220. When an internal clock line is stable with a correct
frequency (conditional block 612), then in block 616, the
HCCU 166 enables the clock generating gate, which provides
an updated clock signal on its output line.

If the last level of the CSN 220 has not yet been reached
(conditional block 618), then in block 620, the HCCU 166
moves to a next lower level of the CSN 220 and control flow
of method 600 returns to block 610. If a last level of the CSN
220 has been reached (conditional block 618), but a last core
clock associated with the specified IC device has not yet been
reached (conditional block 622), then control flow of method
600 returns to block 606. If a last core clock associated with
the specified IC device has been reached (conditional block
622), then in block 624, a reset sequence for the specified IC
device may begin.

Referring now to FIG. 7, a generalized flow diagram illus-
trating one embodiment of a method 700 for performing a
reset sequence for a recently enabled IC device is shown. For
purposes of discussion, the steps in this embodiment are
shown in sequential order. However, some steps may occur in
a different order than shown, some steps may be performed
concurrently, some steps may be combined with other steps,
and some steps may be absent in another embodiment.

US 9,081,517 B2

13

In block 702, the HCCU 166 may detect a given IC device
is ready for a reset sequence to begin. The HCCU 166 may
have completed enabling clock generating gates to provide
associated core clocks to the software-specified IC device. If
each of the associated core clocks is not yet running (condi-
tional block 704), then in block 706, the HCCU 166 may
repeat performing an enabling procedure for the core clocks
as described above regarding method 600. Alternatively, the
HCCU 166 may send a status message to the software 210 and
allow the software 210 to decide a next step. The HCCU 166
may both send a status message and repeat the enabling
procedure.

Ifeach of'the associated core clocks is running (conditional
block 704), then in block 708, the HCCU 166 may notify one
or more associated reset controllers to begin an IC device
reset sequence. When the HCCU 166 detects the reset
sequence is completed (conditional block 710), then the
HCCU 166 may determine whether any associated core
clocks are unused after the reset sequence. This information
may be stored in table 530 or another table. If there are not any
associated core clocks unused after the reset sequence (con-
ditional block 714), then in block 716, the reset sequence is
completed and the enabling of the associated IC device is
completed. Otherwise, in block 718, the HCCU 166 disables
the identified core clocks by sequencing through the levels of
the CSN 220. During this sequencing through the levels, the
HCCU 166 disables associated clock generating gates in a
manner that doesn’t interfere with other clock signals within
the CSN 220.

Turning now to FIG. 8, a generalized flow diagram illus-
trating one embodiment of a method 800 for disabling core
clocks on a SOC is shown. For purposes of discussion, the
steps in this embodiment are shown in sequential order. How-
ever, some steps may occur in a different order than shown,
some steps may be performed concurrently, some steps may
be combined with other steps, and some steps may be absent
in another embodiment.

Inblock 802, the HCCU 166 may receive a disable request
from the software 210 specifying a given IC device on the
SOC 100. In block 804, the HCCU 166 may identify IDs of
core clocks corresponding to the specified IC device. In block
806, the HCCU 166 may select a given one of the identified
core clocks.

In block 808, the HCCU 166 may identify and disable a
clock generating gate at the bottom of a clock tree associated
with the given core clock. In block 810, the HCCU 166 may
identify a clock generating gate in a next upper level in the
clock tree. In block 812, the HCCU 166 may determine
whether this clock generating gate provides other core clocks.
If this clock generating gate does not provide other core
clocks (conditional block 814), then in block 816, the HCCU
166 may disable the clock generating gate at this current level.

Referring again to F1G. 4, if the IC device 2604 is specified
by the software 210 to be disabled, then in block 808 of
method 800, the HCCU 166 may identify and disable the N
divider 418 in the bottom level of the clock tree. In block 810
of method 800, the HCCU 166 may identify the MUX gate
412 as the clock generating gate in the next upper level of the
clock tree. After determining the MUX gate 412 does not
provide other core clocks, the HCCU 166 may disable the
MUX gate 412. The N divider 406 may be identified as an
associated clock generating gate in the next upper level of the
clock tree. However, the N divider 406 does provide other
core clocks. Therefore, the N divider 406 may not be disabled.

After disabling a clock generating gate in block 816 of
method 800, if the last level of the clock tree has not yet been
reached (conditional block 818), then control flow of method

20

25

40

45

50

55

60

65

14

800 returns to block 810. If a given clock generating gate at a
current level of the clock tree does provide other core clocks
(conditional block 814), then control flow of method 800 may
move to conditional block 820. The clock generating gate is
not disabled, since other “children” depend on the provided
clock signal from this “parent” gate. A next core clock may be
processed.
If the last level of the clock tree has been reached (condi-
tional block 818), such as the top level including a PLL, but
the last core clock has not yet been processed (conditional
block 820), then control flow of method 800 returns to block
806. Otherwise, if the last core clock has been processed
(conditional block 820), then in block 822 the disable request
for the specified IC device is completed. The IC device may
receive no running core clocks. The steps described in blocks
804-822 may occur without a received request from the soft-
ware 210. The hardware may traverse up the clock tree and
find enabled clock generating gates that are unused. The
hardware may then turn off these gates.
Although the embodiments above have been described in
considerable detail, numerous variations and modifications
will become apparent to those skilled in the art once the above
disclosure is fully appreciated. It is intended that the follow-
ing claims be interpreted to embrace all such variations and
modifications.
What is claimed is:
1. A method comprising:
providing via a clock switching network (CSN) an associ-
ated one of a plurality of core clocks to each of a plurality
of integrated circuit (IC) devices on a system-on-a-chip
(SOC);

receiving at a hardware clock control unit (HCCU) a soft-
ware-initiated request specifying a first IC device iden-
tifier corresponding to the plurality of IC devices,
wherein the software-initiated request is generated at
least in part responsive to an earlier indication sent by
the HCCU indicating the first IC device is ready for a
change in one or more core clocks;

selecting a given entry of a first table using the device

identifier, wherein the first table comprises a plurality of
entries and each entry of the plurality of entries associ-
ates a device identifier with one or more core clock
identifiers;

identifying one or more core clock identifiers within the

given entry;

for each of the one or more identified core clock identifiers,

configuring circuitry within the CSN to generate an
identified core clock.

2. The method as recited in claim 1, wherein for each of the
one or more identified core clock identifiers, configuring
circuitry within the CSN further comprises the HCCU:

identifying one or more associated clock generating gates;

for each one of the identified clock generating gates, load-
ing parameter values corresponding to an identified core
clock; and

enabling each one of the identified clock generating gates

according to a timing schedule preventing an output of
each one of the identified clock generating gates from
changing until each corresponding input has stabilized.

3. The method as recited in claim 2, wherein the parameter
values include at least one of the following: a select value for
a clock switching circuit gate and a divisor value for a clock
frequency divider circuit gate.

4. The method as recited in claim 1, further comprising the
HCCU:

detecting each clock corresponding to the one or more core

clock identifiers is enabled; and

US 9,081,517 B2

15

in response to said detection, sending an indication to a
reset controller corresponding to the first IC device to
begin a reset sequence for the first IC device.

5. The method as recited in claim 1, further comprising the

HCCU:

receiving a software-initiated request specifying a second
IC device of the plurality of IC devices is to be disabled;

identifying one or more core clocks of the plurality of core
clocksused by circuitry within the second IC device; and

for each one of the identified core clocks, disable associ-
ated circuitry within the CSN to disable an identified
core clock.
6. The method as recited in claim 1, further comprising
using a core clock identifier of the identified core clock iden-
tifiers to access a second table, wherein the second table
comprises a plurality of entries and each entry of the plurality
of entries associates a core clock identifier with one or more
clock gates within the CSN.
7. The method as recited in claim 1, further comprising the
HCCU:
determining a given clock generating gate in a given level
of the CSN has no enabled targets, wherein a target is
another clock generating gate or an IC device; and
in response to said determination, disabling the given clock
generating gate.
8. The method as recited in claim 7, further comprising the
HCCU traversing the CSN from a bottom level to a top level
when performing said determination.
9. A system-on-a-chip (SOC) comprising:
a software interface;
a plurality of phase lock loops (PLLs);
a plurality of integrated circuit (IC) devices, each config-
ured to receive one or more associated core clocks of a
plurality of core clocks provided by one or more of the
plurality of PLLs via a clock switching network;
a hardware clock control unit (HCCU) coupled to the soft-
ware interface and the clock switching network; and
atable comprising a plurality of entries, wherein each entry
of the plurality of entries associates a device identifier
with one or more core clock identifiers;
wherein the HCCU is configured to:
receive a software-initiated request specifying a first IC
device identifier corresponding to the plurality of IC
devices, wherein the software-initiated request is gen-
erated at least in part responsive to an earlier indica-
tion sent by the HCCU indicating the first IC device is
ready for a change in one or more core clocks;

select a given entry of the table using the first IC device
identifier;

identify one or more core clock identifiers within the
given entry;

for each one of the one or more identified core clock
identifiers, configure associated circuitry within the
clock switching network (CSN) to generate an iden-
tified core clock.

10. The SOC as recited in claim 9, wherein for each of the
one or more identified core clock identifiers, the HCCU is
configured to:

identify one or more associated clock generating gates
within the CSN;

for each one of the identified clock generating gates, load
parameter values corresponding to an identified core
clock; and

enable each one of the identified clock generating gates
according to a timing schedule preventing an output of
each one of the identified clock generating gates from
changing until each corresponding input has stabilized.

11. The SOC as recited in claim 10, wherein the HCCU is
further configured to read the parameter values from pro-
grammable clock configuration registers.

16
12. The SOC as recited in claim 9, wherein the HCCU is
further configured to:
detect each clock corresponding to one or more core clock
identifiers is enabled; and
5 in response to said detection, send an indication to a reset
controller corresponding to the first IC device to begin a
reset sequence for the first IC device.

13. The SOC as recited in claim 12, wherein the HCCU is
further configured to:

receive an indication from the reset controller that the reset

sequence is complete;

in response to said detection:

identify a subset of the identified core clocks unused
after the reset sequence; and

for each one of the core clocks in the identified subset,
configure associated circuitry within the CSN to dis-
able an identified core clock.

14. The SOC as recited in claim 9, wherein the HCCU is
further configured to:

receive a software-initiated request specifying a second IC

device of the plurality of IC devices is to be disabled;
identify one or more core clocks of the plurality of core
clocksused by circuitry within the second IC device; and
for each one of the identified core clocks, disable associ-
ated circuitry within the CSN to disable an identified
core clock.

15. The SOC as recited in claim 9, wherein the HCCU is
further configured to use a core clock identifier of the identi-
fied core clock identifiers to access a second table, wherein
30 the second table comprises a plurality of entries and each
entry of the plurality of entries associates a core clock iden-
tifier with one or more clock gates within the CSN.

16. The SOC as recited in claim 9, wherein the HCCU is
further configured to:

determine a given clock generating gate in a given level of

10

15

20

25

3 the CSN has no enabled targets, wherein a target is
another clock generating gate or an IC device; and
in response to said determination, disable the given clock
generating gate.
20 17. A hardware clock control unit (HCCU) on a system-

on-a-chip (SOC) comprising:
a first interface configured to receive software-initiated
requests;
a second interface coupled to a clock switching network
(CSN) configured to provide an associated one of a
plurality of core clocks to each of a plurality of inte-
grated circuit (IC) devices on a system-on-a-chip
(SOC);
atable comprising a plurality of entries, wherein each entry
of the plurality of entries associates a device identifier
with one or more core clock identifiers;
wherein the control logic is configured to:
receive a software-initiated request specifying a first IC
device identifier corresponding to the plurality of IC
devices, wherein the software-initiated request is gen-
erated at least in part responsive to an earlier indica-
tion sent by the HCCU indicating the first IC device is
ready for a change in one or more core clocks;

select a given entry of the table using the first IC device
identifier;

identify one or more core clock identifiers within the
given entry;

for each one of the one or more identified core clock
identifiers, configure associated circuitry within the
clock switching network (CSN) to generate an iden-
tified core clock.

18. The HCCU as recited in claim 17, wherein for each of

the one or more identified core clock identifiers, the control
logic is configured to:

45

50

55

60

US 9,081,517 B2
17

identify one or more associated clock generating gates
within the CSN;

for each one of the identified clock generating gates, load
parameter values corresponding to an identified core
clock; and 5

enable each one of the identified clock generating gates
according to a timing schedule preventing an output of
each one of the identified clock generating gates from
changing until each corresponding input has stabilized.

19. The HCCU as recited in claim 17, wherein the control

logic is further configured to:

receive a software-initiated request specifying a second IC
device of the plurality of IC devices is to be disabled;

identify one or more core clocks of the plurality of core
clocksused by circuitry within the second IC device; and

for each one of the identified core clocks, disable associ- 13
ated circuitry within the CSN to disable an identified
core clock.

20. The HCCU as recited in claim 19, wherein the control

logic is further configured to:

determine a given clock generating gate in a given level of 20
the CSN has no enabled targets, wherein a target is
another clock generating gate or an IC device; and

in response to said determination, disable the given clock
generating gate.

10

